Diketahui f (x) = x^2 + 2x + 5 dan (f + g) (x) = 2x^2 - x + 3. Tentukan :
a. g(x)
b. f(2) dan g(2)
c. (f + g)(2) dan (f - g)(2)
a. g(x)
b. f(2) dan g(2)
c. (f + g)(2) dan (f - g)(2)
f(x) = (x² + 2x + 5)
(f + g)(x) = (2x² - x + 3)
(f + g)(x) = f(x) + g(x)
(2x² - x + 3) = (x² + 2x + 5) + g(x)
g(x) = (2x² - x + 3) - (x² + 2x + 5)
g(x) = 2x² - x + 3 - x² - 2x - 5
g(x) = 2x² - x² - x - 2x + 3 - 5
g(x) = (x² - 3x - 2)
f(x) = (x² + 2x + 5)
f(2) = ((2)² + 2•2 + 5)
f(2) = (4 + 4 + 5)
f(2) = 13
g(x) = (x² - 3x - 2)
g(2) = ((2)² - 3•2 - 2)
g(2) = (4 - 6 - 2)
g(2) = (-4)
(f + g)(2) = f(2) + g(2)
(f + g)(2) = 13 + (-4)
(f + g)(2) = 9
(f - g)(2) = f(2) - g(2)
(f - g)(2) = 13 - (-4)
(f - g)(2) = 17
[answer.2.content]